Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Braz. j. med. biol. res ; 45(1): 68-71, Jan. 2012. ilus, tab
Article in English | LILACS | ID: lil-610553

ABSTRACT

The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.


Subject(s)
Adult , Female , Humans , Brain-Derived Neurotrophic Factor/blood , Multiple Sclerosis, Relapsing-Remitting/blood , Multiple Sclerosis, Relapsing-Remitting/pathology , Biomarkers/blood , Case-Control Studies , Gadolinium , Magnetic Resonance Imaging/methods
2.
Braz. j. med. biol. res ; 43(12): 1173-1177, Dec. 2010. ilus
Article in English | LILACS | ID: lil-569001

ABSTRACT

Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection. This condition has been associated with cognitive, behavioral and motor dysfunctions, seizures and coma. The underlying mechanisms of CM are incompletely understood. Glutamate and other metabolites such as lactate have been implicated in its pathogenesis. In the present study, we investigated the involvement of glutamate in the behavioral symptoms of CM. Seventeen female C57BL/6 mice (20-25 g) aged 6-8 weeks were infected with P. berghei ANKA by the intraperitoneal route using a standardized inoculation of 10(6) parasitized red blood cells suspended in 0.2 mL PBS. Control animals (N = 17) received the same volume of PBS. Behavioral and neurological symptoms were analyzed by the SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment (SHIRPA) battery. Glutamate release was measured in the cerebral cortex and cerebrospinal fluid of infected and control mice by fluorimetric assay. All functional categories of the SHIRPA battery were significantly altered in the infected mice at 6 days post-infection (dpi) (P ≤ 0.05). In parallel to CM symptoms, we found a significant increase in glutamate levels in the cerebral cortex (mean ± SEM; control: 11.62 ± 0.90 nmol/mg protein; infected at 3 dpi: 10.36 ± 1.17 nmol/mg protein; infected at 6 dpi: 26.65 ± 0.73 nmol/mg protein; with EGTA, control: 5.60 ± 1.92 nmol/mg protein; infected at 3 dpi: 6.24 ± 1.87 nmol/mg protein; infected at 6 dpi: 14.14 ± 0.84 nmol/mg protein) and in the cerebrospinal fluid (control: 128 ± 51.23 pmol/mg protein; infected: 301.4 ± 22.52 pmol/mg protein) of infected mice (P ≤ 0.05). These findings suggest a role of glutamate in the central nervous system dysfunction found in CM.


Subject(s)
Animals , Female , Mice , Behavioral Symptoms/physiopathology , Cerebral Cortex/chemistry , Cerebrospinal Fluid/chemistry , Glutamic Acid/metabolism , Malaria, Cerebral/metabolism , Plasmodium berghei , Malaria, Cerebral/cerebrospinal fluid , Malaria, Cerebral/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL